The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Lifespans

The Biology of Human Longevity. Inflammation, Nutrition, and Aging in the Evolution of Life Spans. Book • 1st Edition • 28th September Authors: Caleb E.
Table of contents

The paleopathology of neoplasia may only be approached in bone tumors, which persist in graveyard and fossil skeletons I have not found reports on pathologically confirmed bone tumors in prehistoric human fossils. The neuropathology of aging in great apes is also surprising. Detailed studies of brains from chimpanzee, gorilla, and orangutan of 40 years or older concur on the rarity of Alzheimer-like neurodegenerative changes of neuronal loss, neuritic plaques dense amyloid plaques with neuritic degeneration , and neurofibrillary degeneration with tau immunoreactivity 1 , 64 , Nonetheless, it was recent reported that a year-old chimpanzee died after a stroke with the classic tau-positive neurofibrillary tangles with paired helical filaments This individual also had obesity and chronic hypercholesterolemia.

Despite the neurofibrillary tangles, other brain changes were mild: Possibly, hypercholesterolemia may promote a subset of Alzheimer-like changes in chimpanzees under some circumstances. Variations of trace elements could be a factor. Lead can also promote later formation of amyloid deposits in monkeys Wild chimpanzees of 25 years have increasingly frequent decrepit appearances from bone fractures, skin wounds, tooth loss, weight loss, and difficulty climbing 16 , p Degenerative osteoarthitic changes are indicated in some samples.

Similarly, an early 20th-century sample from West Africa had prevalent erosive osteoarthritis A Gombe sample, however, had minimal spinal osteoarthritis The uncertain ages and small samples preclude comparisons with humans. Nonetheless, wild females are fertile up through at least 42 years Thus, few if any female chimpanzees survive to reproductive senescence in natural populations. By contrast, most hunter-gatherer females reaching adulthood survive beyond menopause 6 , 8 , 9.

The extended postmenopausal phase also uniquely exposes humans to osteoporotic fractures from low estrogen that are not reported for great apes. Male reproductive aging is undefined: The social hierarchies that determine access to females are dominated by prime-age adult males typically in the late teens to late twenties 16 , fig.

New Research In

The indications of faster aging in chimpanzees than in humans by the earlier acceleration of mortality require corroboration by age-specific changes in pathology and organ function. Because menopause occurs at about the same age, 50, reproductive declines may be relatively delayed in female chimpanzees. The emerging profile of pathology in aging captive chimpanzees suggests the importance of environmental and husbandry variables for myocardial and brain aging, in which blood cholesterol and trace metals could be important.

The low prevalence of ischemic heart disease in modern colonies may represent improvements of husbandry, but the scattered data from earlier colonies do not allow firm conclusions. However, for cancer and myocardial pathology, age-specific rate data are needed for comparison with human aging. Measures of cardiopulmonary function and immunosenescence in captive colonies will also be informative. Conversely, it is important to know whether the diffuse interstitial fibrosis of aging chimpanzees also occurs in some human populations.

During human evolution, the diet has shifted to increased consumption of animal tissues, although plant-based foods have always been important 1 , 2 , The advantages of meat-rich diets include higher density caloric content reducing efforts in foraging and digestion , and concentrated micronutrients trace metals and polyunsaturated fatty acids required for optimum development of the musculature and nervous system.

However, increased trace metals and fat ingestion could also interact with pathogensis, as noted previously.

The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Lifespans

The greater meat consumption of longer-lived humans than great ape ancestors presents a paradox because in many animal models of human disease and longevity, greater fat and caloric intake is associated with accelerated pathogenesis and shortened lifespan 1 , 2. Similarly, caloric restriction attenuates atherosclerosis, diabetes, and neoplasia in animal models 2. Changes in diet also increased exposure to pathogens and toxins. Uncooked meat, particularly from scavenged old carcasses, would have increased exposure to infectious pathogens.

Though cooking can kill most pathogens and increases the digestibility of meat and fibrous plant material 79 , cooking also accelerates nonenzymatic glyco-oxidation to form advanced glycation endproducts AGEs that are diabetogenic and proatherosclerotic in animal models and in clinical studies 80 , How did humans evolve increased longevity despite the greater fat intake and exposure to pathogens?

Finch and Stanford 1 proposed that the diet and longevity shifts during the evolution were supported by meat-adaptive genes, with tradeoffs of mortality and for ingestion of fat and toxins, and pathogen exposure. Before considering specific genes, it is notable that a small part of the DNA difference between humans and chimpanzees shows evidence of positive selection. The genome-wide single nucleotide nt differences are 1. Genes undergoing positive selection based on the ratio of nonsynonymous: Moreover, genes associated with immunity and brain have variation clusters of highly localized groups of changes in coding regions Surprisingly, the aging-associated genes had less variation than the average, implying slower evolutionary change in the human lineage, e.

The high incidence of neoplasia in humans is not explained so far by DNA sequences. Of cancer-associated genes, the majority are almost identical in chimpanzees 88 , BRCA1 also shows evidence for positive selection at the coding level and Hardy-Weinburg disequilibrium in human populations. Influences of BRCA1 and - 2 alleles on early growth imply tradeoffs for growth and DNA repair relevant to the uniquely human pattern of early breast development with antagonist pleiotropy of later neoplasia Host defense system genes show evidence for positive selection, as noted.

The most details may be available for the major histocompatibility complex MHC and sialic acid-binding Ig-like lectins Siglecs. The MHC system is fundamental to innate and adaptive immunity: A major species difference is the loss of polymorphisms in class I A and B genes. Because the remaining MHC classes had equivalent variety, this class-specific loss of variation suggests a selective sweep There is no easy test of the adaptiveness of the numerous allele differences.

Differences in the Siglec lectin family of proteins Ig superfamily cell-surface glycoproteins have specific implications for host-defense evolution in studies from Varki and coworkers 92 , Siglecs bind the sialic acids on cell surfaces of macrophages and other immune-related cells. Siglec genes appear to have evolved very rapidly, because there is a much smaller divergence between mice and rats, which had a more distant common ancestor.

Siglec-5 manipulation switched the species-type response to T-cell receptor TCR stimulation. This species difference may be a factor in T-cell-mediated diseases, including the much milder chimpanzee disease from HIV-1 and hepatitis B or C 94 , and the apparent lack of spontaneous rheumatoid arthritis and bronchial asthma.

These differences in immunoreactivity could involve the weaker expression of CD33rSiglecs of humans, relative to great apes Siglecs also modulate Streptococcus invasiveness GBS Direct species comparisons are needed of immune cell responses to specific pathogens and of transcriptomes and kinomes. Humans also differ by the absence of N -glycolylneuraminic acid Neu5Gc , a major sialic acid of chimpanzees and other great apes 92 , A mutation that occurred early in the genus Homo , at least before 0. For example, the chimpanzee malarial parasite has a protein that binds preferentially to Neu5Gc during erythrocyte invasion, whereas that of the human parasite P.

The evolving human diet could also have had a role in these complex immunological scenarios, because normal tissues have traces of Neu5Gc, which may be acquired from ingestion of red meat and milk; this could stimulate chronic inflammation induced by anti-Neu5Gc antibodies and also facilitate metastasis Lastly, I consider the apolipoprotein E ApoE alleles, which modulate chronic inflammation and many aspects of aging in brain and arteries and which Sapolsky, Stanford, and I 1 , 2 , 98 have proposed as a meat-adaptive candidate gene in the increases of the human lifespan.

Blood apoE mediates the clearance of triglyceride-rich lipoprotein components, and brain apoE transports cholesterol to neurons The uniquely human apoE3 allele spread about 0. These dates precede the emigration of modern H. In general, the apoE4 allele shortens lifespan by several years and accelerates degenerative changes in arteries and brain 2 , 99 , , , ApoE4 carriers have modestly higher total blood cholesterol, more oxidized blood lipids, and greater risk of coronary heart disease ca.

ApoE4 carriers also have worse outcomes in traumatic brain injury and some neurological conditions. One mechanism may involve heightened inflammatory responses.

Inflammation, Nutrition, and Aging in the Evolution of Life Spans

On a fatty diet, TR- apoE4 mice had larger adipocytes and impaired glucose tolerance ; however, obesity and diabetes have not shown consistent apoE allele associations. Though the chimpanzee apoE has 2 amino acids like apoE4, it is predicted to function like the human apoE3 isoform because of a further coding difference that influences peptide folding , Table 3. Although chimpanzee apoE has not shown allelic variation in small samples , serum cholesterol had considerable heritability in a former breeding colony Besides influencing brain aging, apoE alleles also affect brain development.

Cortical neurons of young TR- apoE4 mice have less dendritic complexity , which may be a factor in their impaired spatial memory ApoE alleles are increasingly included in studies of human development. In MRI studies of healthy juveniles, the apoE4 carriers had a thinner entorhinal cortex As a hedge against overinterpretations of these broad effects, it may be reassuring that apoE alleles have not shown consistent associations with fertility or neoplasia 2. Given these adverse effects of apoE4 , at least in modern environments, the persistence of the allele has been proposed as the result of balancing selection, as in malarial protection by heterozygotes of hemoglobinopathies 1 , Two examples are under discussion, for which the evidence must be considered as preliminary.

In hepatitis C infections, apoE4 carriers incurred less fibrotic damage by allele dose , , whereas Brazilian slum children carrying apoE4 showed less diarrhea and associated impairments of cognitive development , The hyperreactivity of human T cells noted previously, and the inflammatory responses in apoE4 carriers, may be part of an evolved group of heightened immune defenses relative to great apes that decreased baseline mortality represented in the q min , as discussed earlier. However, the heightened immune responses could then have delayed adverse effects in cardiovascular disease and other chronic conditions of aging that involve inflammation 2 and that became more prevalent in the 20th century.

This suggestion extends the antagonistic pleiotropy theory of aging in which genes selected for early advantages can have delayed adverse effects that are under weaker selection.

SENS5 Lecture - The future of human lifespans, a demographic perspective

This paper results from the Arthur M. The complete program and audio files of most presentations are available on the NAS web site at www. We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address. Skip to main content. Evolution of the human lifespan and diseases of aging: Roles of infection, inflammation, and nutrition Caleb E. Abstract Humans have evolved much longer lifespans than the great apes, which rarely exceed 50 years.

Evolving Demographics of Aging The human LE 0 has doubled during over an evolutionary span of about , generations from a great ape ancestor shared with chimpanzees 1 , 2. View inline View popup. Comparative demographics of chimpanzees and humans. Table 2 Cause of death in feral chimpanzees and hunter-gatherers. Summary on Aging in Chimpanzees. Table 3 Apolipoprotein E polymorphisms in humans and species differences. The authors declare no conflict of interest. Q Rev Biol Broken limits to life expectancy. Am J Phys Anthropol Diet, intelligence, and longevity. Gurven M , Kaplan H Hunter-gatherer longevity: Popul Dev Rev How within-species variation complicates cross-species comparisons.

Am J Hum Biol Hawkes K Human longevity: Hill K , et al. J Hum Evol Changes in the age of minimum mortality. Abstract available at http: Rosen RD The lie of the jungle. Washington Post , December 7 , p W Jeune B , et al.


  • The Prohibition Hangover: Alcohol in America from Demon Rum to Cult Cabernet.
  • ;
  • Flare #34?
  • !
  • Pioniere der Informatik: Ihre Lebensgeschichte im Interview (German Edition).
  • ?
  • .

Biographical notes on the longest living humans. Supercentenarians , ed Maier H Springer , Berlin. Williams JM , et al. Am J Primatol Goodall J The Chimpanzees of Gombe: Keele BF , et al. Regional variation and temporal trends. Black FL Infectious diseases in primitive societies. Scheidel W Demography. Hadrup SR , et al. Pita-Lopez ML , et al. Desquilbet L , et al. J Acquir Immune Defic Syndr J Cardiovasc Transl Res 2: J Devel Origin Health Disease 1: Spyridopolous I , et al. Role of cytomegalovirus seropositivity. Ruffer M On arterial lesions found in Egyptian mummies.

The Biology of Human Longevity

J Pathol Bacteriol Bruetsch WL The earliest record of sudden death possibly due to atherosclerotic coronary occlusion. Blaha M , et al. Rennenberg RJ , et al. Vasc Health Risk Manag 5: Magee R Arterial disease in antiquity.


  • See a Problem?.
  • ?
  • .
  • ;
  • ?

Med J Aust II lesions in chimapnzees, including myocardial infarction and cerebral aneurysms. Prog Biochem Pharmacol 4: Ratcliffe HL Age and the environment as factors in the nature and frequency of cardiovascular lesions in mammals and birds in the Philadelphia Zoological Gardens. Ann N Y Acad Sci 7: Manning GW Coronary disease in the ape.

Am Heart J Blaton V , et al. Comparison to the human hyperlipoproteinemia. Exp Mol Pathol Varki N , et al.

The Biology of Human Longevity | ScienceDirect

Videan EN , et al. Huby T , et al. Identification of sequence variations responsible for elevated transcriptional activity in chimpanzee. J Biol Chem Lammey ML , et al. Seiler BM , et al. Varki AA A chimpanzee genome project is a biomedical imperative. Beniashvili DS An overview of the world literature on spontaneous tumors in nonhuman primates. J Med Primatol Lapin BA Use of nonhuman primates in cancer research.

Brown SL , et al. Waters DJ , et al. Spontaneous prostate carcinoma in dogs and nonhuman primates. Cianciolo RE , et al. J Comp Pathol Cline JM Neoplasms of the reproductive tract: The role of hormone exposure. Exp Toxicol Pathol 9: Case series from a captive prosimian population and literature review. Inflammation, Nutrition, and Aging in the Evolution of Lifespans synthesizes several decades of top research on the topic of human aging and longevity particularly on the recent theories of inflammation and its effects on human health.

The book expands a number of existing ma Written by Caleb Finch, one of the leading scientists of our time, The Biology of Human Longevity: The book expands a number of existing major theories, including the Barker theory of fetal origins of adult disease to consider the role of inflammation and Harmon's free radical theory of aging to include inflammatory damage. Future increases in lifespan are challenged by the obesity epidemic and spreading global infections which may reverse the gains made in lowering inflammatory exposure. This timely and topical book will be of interest to anyone studying aging from any scientific angle.

Hardcover , pages. To see what your friends thought of this book, please sign up. To ask other readers questions about The Biology of Human Longevity , please sign up. Be the first to ask a question about The Biology of Human Longevity. Lists with This Book. This book is not yet featured on Listopia. Justine rated it liked it May 16, Alex rated it really liked it Apr 19, Richard Allen rated it liked it Jun 29, Erin marked it as to-read Oct 24, Bob Law marked it as to-read Dec 09, Amir added it Jul 08, Ohr marked it as to-read Nov 25, Ana Martynova marked it as to-read Feb 10, Jay Gee marked it as to-read Nov 10, Cambria marked it as to-read Apr 25, Gruia marked it as to-read Jun 28, Supriti marked it as to-read Aug 08, Jonathon marked it as to-read Dec 27, Shannon Bresnahan marked it as to-read Feb 02, Sarah Gordon marked it as to-read Feb 03,